map join相对reduce join来说,可以减少在shuff阶段的网络传输,从而提高效率,所以大表与小表关联时,尽量将小表数据先用广播变量导入内存,后面各个executor都可以直接使用
package sogologimport org.apache.hadoop.io.{LongWritable, Text}import org.apache.hadoop.mapred.TextInputFormatimport org.apache.spark.rdd.RDDimport org.apache.spark.{SparkConf, SparkContext}class RddFile { def readFileToRdd(path: String): RDD[String] = { val conf = new SparkConf().setMaster("local").setAppName("sougoDemo") val sc = new SparkContext(conf); //使用这种方法能够避免中文乱码 readFileToRdd(path,sc) } def readFileToRdd(path: String,sc :SparkContext): RDD[String] = { //使用这种方法能够避免中文乱码 sc.hadoopFile(path,classOf[TextInputFormat], classOf[LongWritable], classOf[Text]).map{ pair => new String(pair._2.getBytes, 0, pair._2.getLength, "GBK")} }}
package sogologimport org.apache.spark.{SparkConf, SparkContext}import org.apache.spark.rdd.RDDimport scala.collection.mutable.ArrayBufferobject MapSideJoin { def main(args: Array[String]): Unit = { val conf = new SparkConf().setMaster("local").setAppName("sougoDemo") val sc = new SparkContext(conf); val userRdd = new RddFile().readFileToRdd("J:\\scala\\workspace\\first-spark-demo\\sougofile\\user",sc) //解析用户信息 val userMapRDD:RDD[(String,String)] = userRdd.map(line=>(line.split("\t")(0),line.split("\t")(1))) //将用户信息设置为广播变量,方便各个任务引用 val userMapBroadCast =sc.broadcast(userMapRDD.collectAsMap()) val searchLogRdd = new RddFile().readFileToRdd("J:\\scala\\workspace\\first-spark-demo\\sougofile\\SogouQ.reduced",sc) val joinResult = searchLogRdd.mapPartitionsWithIndex((index,f)=>{ val userMap = userMapBroadCast.value var result = ArrayBuffer[String]() var count = 0 //搜索日志表join用户表 //原来日志列为:时间 用户ID 关键词 排名 URL //新的日志列为:时间 用户ID 用户名 关键词 排名 URL f.foreach( log=>{ count=count+1; val lineArrs = log.split("\t") val uid = lineArrs(1) val newLine:StringBuilder = new StringBuilder() if(userMap.contains(uid)){ newLine.append(lineArrs(0)).append("\t") newLine.append(lineArrs(1)).append("\t") newLine.append(userMap.get(uid).get).append("\t") //从广播变量中根据用户ID获取用户名 for (i<- 2 to lineArrs.length-1){ newLine.append(lineArrs(i)).append("\t") } result .+= (newLine.toString()) } }) println("partition_"+index+"处理的行数为:"+count) result.iterator }) //打印结果 joinResult.collect().foreach(println) }}
结果展示: